Targeted gene knockdown validates the essential role of lactate dehydrogenase in Cryptosporidium parvum
نویسندگان
چکیده
Cryptosporidium parvum is a zoonotic protozoan that can cause a life-threatening gastrointestinal syndrome in children and in immunocompromised adults. Currently, the only approved drug for treatment of Cryptosporidium infections in humans is nitazoxanide, but it is not effective in immunocompromised individuals or in children with malnutrition. This is compounded by the lack of genetic methods for studying and validating potential drug targets in the parasite. Therefore, in this study, we endeavoured to adapt the use of a phosphorodiamidate morpholino oligomer (morpholino) antisense approach to develop a targeted gene knockdown assay for use in C. parvum. We show that morpholinos, at non-toxic concentrations, are rapidly internalised by both C. parvum and host cells (HCT-8), and distribute diffusely throughout the cytosol. Using morpholinos to separately target C. parvum lactate dehydrogenase and putative arginine n-methyltransferase genes, within 36h of in vitro culture, we achieved over 10-fold down-regulation of the respective encoded proteins in C. parvum. Pursuant to this, we observed that knockdown of C. parvum lactate dehydrogenase produced a dramatic reduction in intracellular growth and development of C. parvum by 56h of culture. On the other hand, C. parvum putative arginine n-methyltransferase knockdown did not appear to have any effect on parasite growth, but nevertheless provided the proof-of-principle that the morpholino knockdown assay in C. parvum was consistent. Together, our findings present a gene regulation approach for interrogating gene function in C. parvum in vitro, and further provide genetic evidence for the essential role of C. parvum lactate dehydrogenase in fueling the growth and development of intracellular C. parvum.
منابع مشابه
Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase.
The protozoan parasite Cryptosporidium parvum causes waterborne diseases worldwide. There is no effective therapy for C. parvum infection. The parasite depends mainly on glycolysis for energy production. Lactate dehydrogenase is a major regulator of glycolysis. This paper describes the biochemical characterization of C. parvum lactate dehydrogenase and high resolution crystal structures of the ...
متن کاملPhotocatalytic inactivation of Cryptosporidium parvum on nanostructured titanium dioxide films.
Control of waterborne gastrointestinal parasites represents a major concern to water industries worldwide. In developed countries, pathogens in drinking water supplies are normally removed by sand filtration followed by chemical disinfection. Cryptosporidium spp. are generally resistant to common disinfection techniques and alternative control strategies are being sought. In the current study, ...
متن کاملCryptosporidium parvum and Cryptosporidium andersoni infection in naturally infected cattle of northwest Iran
The protozoan intestinal parasite Cryptosporidium commonly infects cattle throughout the world and Iran. The present study was undertaken to determine the abundance and associated risk factors of Cryptosporidium infection in cattle herds of northwestern Iran. A total number of 246 fecal samples from 138 (56.1%) diarrheic (D) and 108 (43.9%) non-diarrheic (ND) cattle were rando...
متن کاملMolecular Detection of Cryptosporidium Parvum in Cow’s Raw Milk in Isfahan Province, 2013
Abstract Background and Objective: Cryptosporidium parvum is a zoonotic protozoan parasite causing diarrheal cryptosporidiosis. Numerous outbreaks of cryptosporidiosis have been reported worldwide. The transmission via milk, water and raw animal products is one of the important ways. The aim of this study was the identification of hsp70 gene in Cryptosporidium parvum in raw c...
متن کاملCryptosporidium Lactate Dehydrogenase Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Target for Developing Therapeutics
The apicomplexan, Cryptosporidium parvum, possesses a bacterial-type lactate dehydrogenase (CpLDH). This is considered to be an essential enzyme, as this parasite lacks the Krebs cycle and cytochrome-based respiration, and mainly-if not solely, relies on glycolysis to produce ATP. Here, we provide evidence that in extracellular parasites (e.g., sporozoites and merozoites), CpLDH is localized in...
متن کامل